Structure of $\operatorname{trans}(\mathbf{C l}, \mathbf{C l})$, trans (\mathbf{P}, \mathbf{P})-Dichlorobis\{[2-(dimethylphosphino)ethyl]amine$N, P\}$ iridium(III) Hexafluorophosphate, $\left[\mathrm{IrCl}_{2}(\mathrm{edmp})_{2}\right] \cdot \mathrm{PF}_{6}$

By Hidehiro Uekusa and Shigeru Ohba*
Department of Chemistry, Faculty of Science and Technology, Keio University, Hiyoshi 3, Kohoku-ku, Yokohama 223, Japan
and Kim P. Simonsen, \dagger Masaaki Kouma \ddagger and Junnosuke Fuitta
Department of Chemistry, Faculty of Science, Nagoya University, Chikusa-ku, Nagoya 464-01, Japan

(Received 10 September 1991; accepted 4 November 1991)

Abstract

Ir}\left(\mathrm{C}_{4} \mathrm{H}_{12} \mathrm{NP}\right)_{2} \mathrm{Cl}_{2}\right] \mathrm{PF}_{6}, M_{r}=618.3\), orthorhombic, Fdd2, $a=23.659$ (8), $b=32.794$ (10), $c=$ 10.042 (5) $\AA, V=7791$ (5) $\AA^{3}, Z=16, D_{m}=2.11, D_{x}$ $=2.11 \mathrm{Mg} \mathrm{m}^{-3}, \quad \lambda(\mathrm{Mo} K \alpha)=0.71073 \AA, \quad \mu=$ $7.44 \mathrm{~mm}^{-1}, F(000)=4736, T=297$ (1) K, $R=0.036$ for 2230 unique observed reflections. The coordination geometry around the Ir atom is approximately octahedral with mean bond distances of 2.097 (10), 2.325 (4) and 2.358 (3) \AA for Ir-N, Ir-P and $\mathrm{Ir}-\mathrm{Cl}$, respectively.

Experimental. The yellow prismatic crystals of the title compound were grown from the ethanol solution. D_{m} was measured by flotation in benzene/ tetrabromoethane. X-ray intensities were measured on a Rigaku AFC-5 diffractometer with graphitemonochromated Mo $K \alpha$ radiation, $\theta-2 \theta$ scan, crystal size $c a 0.3 \times 0.5 \times 0.5 \mathrm{~mm}$. Mean ratio of five standard reflections, $\sum\left(\left|F_{o}\right| /\left|F_{o}\right|_{\text {initial }}\right) / 5$, was in the range $1.00-1.06$. Unit-cell parameters were refined by least squares of 202θ values ($20<2 \theta<30^{\circ}$). 2982 reflections were measured ($2 \theta \leq 60^{\circ}, h 0-33, k 0-46, l$ $0-13$), of which 2230 reflections were observed with $\left|F_{o}\right|>3 \sigma\left(\left|F_{o}\right|\right)$. Absorption correction was made by the Gaussian numerical integration method [transmission factors $0.090<A<0.195$ (Busing \& Levy, 1957)]. Space group was uniquely determined to be Fdd2 from the systematic absences of the face-centered cell together with $0 k l, k+l \neq 4 n$ and $h 0 l, h+l \neq 4 n$. Structure was solved by direct methods with MULTAN78 (Main, Hull, Lessinger, Germain, Declercq \& Woolfson, 1978); coordinates of all the non-H atoms refined by block-diagonal least squares with anisotropic thermal parameters

[^0]using the UNICSIII system (Sakurai \& Kobayashi, 1979); nine among 24 H atoms were located on difference syntheses and others were calculated theoretically and included in the refinement with isotropic thermal parameters. Function $\sum w\left(\left|F_{o}\right|-\right.$ $\left.\left|F_{c}\right|\right)^{2}$ was minimized with $w^{-1}=\sigma^{2}\left(\left|F_{o}\right|\right)+$ $\left(0.015 \mid F_{o}\right)^{2}$. Final $R=0.036, \quad w R=0.044, \quad S=$ 1.85 for 2230 reflections $\S \Delta / \sigma<0.14$, number of reflections/parameters $=7.56, \quad-3.3<\Delta \rho<$ $1.6 \mathrm{e} \AA^{-3}$. The enantiomeric structure was rejected because of larger R factors, $R=0.041, w R=0.051, S$ $=2.13$. Complex neutral-atom scattering factors were taken from International Tables for X-ray Crystallography (1974, Vol. IV). Calculations were performed on a FACOM M-380R of Keio University. Table 1 lists atomic coordinates and equivalent isotropic temperature factors for the non-H atoms and Table 2 gives selected bond lengths and angles. Fig. 1 is an ORTEP (Johnson, 1965) plot of the molecule.

Related literature. Preparation and characterization of rhodium(III) complexes containing (2-aminoethyl)dimethylphosphine (edmp) and crystal structures of fac-[Rh(edmp) $\left.)_{3}\right] \mathrm{Br}_{3} .3 \mathrm{H}_{2} \mathrm{O}$ and $\operatorname{trans}(\mathrm{Cl}, \mathrm{Cl})$,cis $(\mathrm{P}, \mathrm{P})-\left[\mathrm{RhCl}_{2}(\mathrm{edmp})_{2}\right] \mathrm{PF}_{6}$ have been reported previously (Simonsen, Suzuki, Hamada, Kojima, Ohba, Sailo \& Fujita, 1989). The $\mathrm{Ir}-\mathrm{Cl}$ (trans to Cl) and Ir- \mathbf{P} (trans to P) bond lengths are comparable with those in mer- $\left[\mathrm{IrCl}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{3}\right], \quad 2.359(1)-2.368$ (1) and 2.363 (1)-2.384 (1) \AA, respectively (Robertson \& Tucker, 1981). The Ir-N (trans to N) bond distances are similar to those in $\Delta, \Lambda-\left[\left(\mathrm{H}_{2} \mathrm{O}\right)(\mathrm{en})_{2}-\right.$

[^1]Table 1. Positional parameters $\left(\times 10^{4}, \times 10^{5}\right.$ for Ir) and equivalent isotropic temperature factors $\left(\AA^{2} \times 10\right)$
(Hamilton, 1959)

	x	y	z	$B_{\text {eq }}$
Ir	7259 (2)	8520 (1)	0*	22
$\mathrm{Cl}(1)$	-185 (1)	565 (1)	- 190 (4)	32
$\mathrm{Cl}(2)$	1630 (1)	1147 (1)	202 (5)	41
$\mathrm{P}(1)$	949 (2)	622 (1)	-2126 (3)	30
P (2)	480 (1)	1080 (1)	2115 (4)	30
$\mathrm{N}(1)$	1028 (5)	278 (3)	558 (12)	31
N(2)	402 (5)	1418 (3)	-610 (12)	31
$\mathrm{C}(1)$	1168 (7)	102 (4)	- 1816 (16)	43
$\mathrm{C}(2)$	1537 (9)	862 (5)	-2871 (19)	54
C(3)	396 (8)	574 (7)	-3368 (17)	55
C(4)	104 (7)	1563 (4)	1665 (19)	43
C(5)	-7 (7)	774 (6)	3115 (18)	52
C(6)	1048 (7)	1207 (5)	3264 (16)	46
C(7)	1422 (6)	91 (4)	-408 (17)	42
$\mathrm{C}(8)$	391 (7)	1725 (4)	502 (19)	45
$\mathrm{P}(3)$	1659 (2)	-248(1)	3895 (5)	43
F(1)	2141 (8)	-162 (9)	2995 (24)	193
F(2)	1306 (6)	-405 (4)	2704 (18)	106
F(3)	1187 (9)	-305 (9)	4824 (23)	207
F(4)	2012 (8)	-110 (6)	5118 (21)	144
F(5)	1462 (11)	177 (5)	3716 (27)	182
F(6)	1858 (12)	-681 (6)	4122 (23)	177
* Parameter kept fixed for origin definition.				

Fig. 1. An ORTEP (Johnson, 1965) drawing of the molecule with 50% probability ellipsoids. H atoms are represented by circles of radius $0.08 \AA$.

Table 2. Selected bond lengths (\AA) and bond angles $\left({ }^{\circ}\right)$

$\mathrm{Ir}-\mathrm{Cl}(1)$	$2.359(3)$	$\mathrm{Ir}-\mathrm{P}(2)$	$2.326(4)$
$\mathrm{Ir}-\mathrm{Cl}(2)$	$2.356(3)$	$\mathrm{Ir}-\mathrm{N}(1)$	$2.090(10)$
$\mathrm{Ir}-\mathrm{P}(1)$	$2.325(3)$	$\mathrm{Ir}-\mathrm{N}(2)$	$2.099(10)$
$\mathrm{Cl}(1)-\mathrm{Ir}-\mathrm{Cl}(2)$		$179.2(1)$	$\mathrm{P}(2)-\mathrm{Ir}-\mathrm{N}(1)$
$\mathrm{Cl}(1)-\mathrm{Ir}-\mathrm{P}(1)$	$90.2(1)$	$\mathrm{P}(2)-\mathrm{Ir}-\mathrm{N}(2)$	$97.5(3)$
$\mathrm{Cl}(1)-\mathrm{Ir}-\mathrm{P}(2)$	$88.5(1)$	$\mathrm{N}(1)-\mathrm{Ir}-\mathrm{N}(2)$	$83.7(3)$
$\mathrm{Cl}(1)-\mathrm{Ir}-\mathrm{N}(1)$	$88.6(3)$	$\mathrm{Ir}-\mathrm{P}(1)-\mathrm{C}(1)$	$177.9(4)$
$\mathrm{Cl}(1)-\mathrm{Ir}-\mathrm{N}(2)$	$89.8(3)$	$\mathrm{Ir}-\mathrm{P}(1)-\mathrm{C}(2)$	$102.3(4)$
$\mathrm{Cl}(2)-\mathrm{Ir}-\mathrm{P}(1)$	$90.4(1)$	$\mathrm{Ir}-\mathrm{P}(1)-\mathrm{C}(3)$	$117.6(7)$
$\mathrm{Cl}(2)-\mathrm{Ir}-\mathrm{P}(2)$	$90.9(1)$	$\mathrm{Ir}-\mathrm{P}(2)-\mathrm{C}(4)$	$99.8(5)$
$\mathrm{Cl}(2)-\mathrm{Ir}-\mathrm{N}(1)$	$9.1(3)$	$\mathrm{Ir}-\mathrm{P}(2)-\mathrm{C}(5)$	$118.9(6)$
$\mathrm{Cl}(2)-\mathrm{Ir}-\mathrm{N}(2)$	$89.6(3)$	$\mathrm{Ir}-\mathrm{P}(2)-\mathrm{C}(6)$	$117.9(5)$
$\mathrm{P}(1)-\mathrm{Ir}-\mathrm{P}(2)$	$178.6(1)$	$\mathrm{Ir}-\mathrm{N}(1)-\mathrm{C}(7)$	$114.4(9)$
$\mathrm{P}(1)-\mathrm{Ir}-\mathrm{N}(1)$	$82.9(3)$	$\mathrm{Ir}-\mathrm{N}(2)-\mathrm{C}(8)$	$112.4(9)$
$\mathrm{P}(1)-\mathrm{Ir}-\mathrm{N}(2)$	$95.8(3)$		

$\left.\operatorname{Ir}(\mathrm{OH}) \operatorname{Ir}(\mathrm{en})_{2}(\mathrm{OH})\right]\left(\mathrm{S}_{2} \mathrm{O}_{6}\right)_{3 / 2} \mathrm{ClO}_{4} \cdot 2.75 \mathrm{H}_{2} \mathrm{O}, 2.054(8)-$ 2.087 (8) $\AA \quad[\mathrm{en}=$ ethylenediamine \quad (Galsbøl, Larsen, Rasmussen \& Springborg, 1986)].

References

Busing, W. R. \& Levy, H. A. (1957). Acta Cryst. 10, 180-182.
Galsbøl, F., Larsen, S., Rasmussen, B. \& Springborg, J. (1986). Inorg. Chem. 25, 290-297.
Hamilton, W. C. (1959). Acta Cryst. 12, 609-610.
Johnson, C. K. (1965). ORTEP. Report. ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
Main, P., Hull, S. E., Lessinger, L., Germain, G., Declerce, J.-P. \& Woolfson, M. M. (1978). A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
Robertson, G. B. \& Tucker, P. A. (1981). Acta Cryst. B37, 814-821.
Sakurai, T. \& Kobayash, K. (1979). Rikagaku Kenkyusho Hokoku, 55, 69-77.
Simonsen, K. P., Suzuki, N., Hamada, M., Kojima, M., Ohba, S., Saito, Y. \& Fuiita, J. (1989). Bull. Chem. Soc. Jpn, 62 3790-3800.

Acta Cryst. (1992). C48, 1112-1114

Trichloromethoxytin(IV) Dimethanolate, $\mathrm{SnCl}_{\mathbf{3}}\left(\mathbf{O C H}_{3}\right) \cdot \mathbf{2 C H} \mathbf{3} \mathbf{O H}$

By Hans Reuter* and Dirk Schröder
Institut für Anorganische Chemie der Universität Bonn, Gerhard-Domagk-Strasse 1, W-5300 Bonn 1, Germany

(Received 20 July 1991; accepted 7 November 1991)

> Abstract. $M_{r}=320.19$, triclinic, $P \overline{1}, a=7.552$ (2), b $=8.114$ (2), $\quad c=9.714$ (4) $\AA, \quad \alpha=93.88(2), \quad \beta=$
> * Author to whom correspondence should be addressed.
102.04 (3), $\gamma=114.80(2)^{\circ}, \quad V=520.3$ (4) $\AA^{3}, Z=2$, $D_{x}=2.045 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \lambda(\mathrm{Mo} \mathrm{K} \mathrm{\alpha})=0.71073 \AA, \quad \mu=$ $29.57 \mathrm{~cm}^{-1}, F(000)=308, T=210(2) \mathrm{K}, R=0.056$ for 2651 reflections with $F_{o} \geq 4 \sigma\left(F_{o}\right)$. The structure

[^0]: * To whom correspondence should be addressed.
 \dagger On leave from Chemistry Department I, University of Copenhagen, Universitetsparken 5, DK-2100, Copenhagen Ø, Denmark.
 \ddagger Present address: Department of Chemistry, Faculty of Science, Okayama University, Tsushima, Okayama 700, Japan.

[^1]: \S Lists of structure factors, anisotropic thermal parameters, H -atom parameters and bond lengths and angles have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 54833 (12 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: AS0553]

